FASTENER GENERAL CATALOGUE

The fastening series of Fukui Byora, a leading cold heading manufacturer in the industry.

Since the company was founded, Fukui Byora's fastening technology has been developed and honed by various customer needs and various usage environments. Fukui Byora designs and manufactures both rivets and rivet setters. That has made possible to establish the total fastening technology.

Fukui Byora offers a wide variety of fastening solutions to meet customer needs.

Healthe. Sara

PIERCINC

eoue. e.p. O.W.E.R. 3+5.5

Prepared note

9

PHP

Lon Prepared hole

CORE. SARA UCHIKU

Curtainmeter

Choose one that best suits your needs from the extensive fastening series.

Mandres material. Steel

repared ha

30

Head type: Usunan

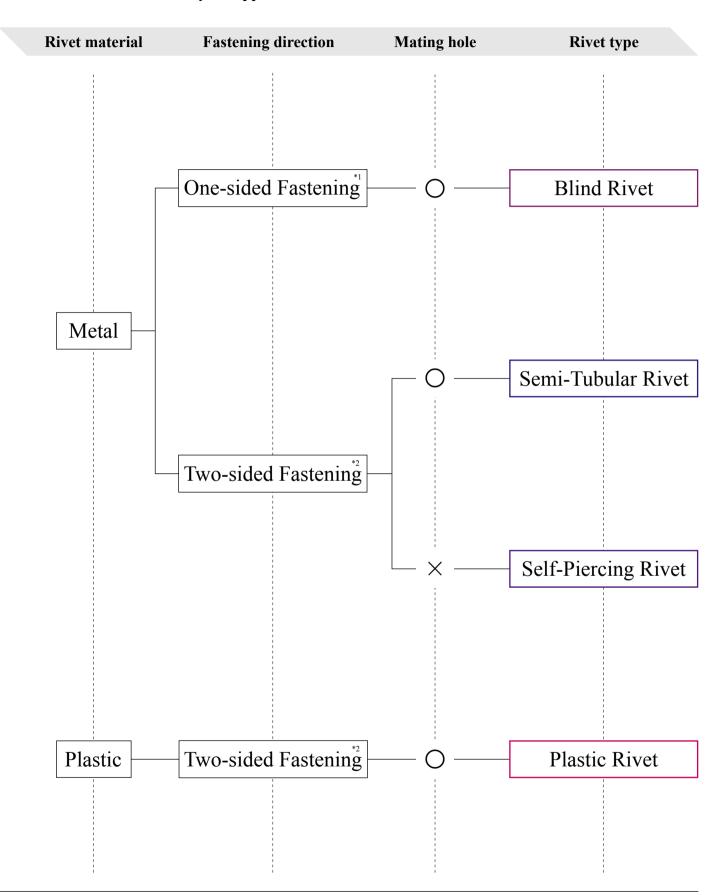
ENTER Spe. Clinki

France type: Manalama

Sicese material: Allininin

CORE: US UNAXE CHURT 3+5

. C.1.3.2.4.8

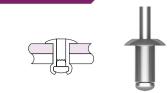

CORE. DASS STRANDARD TYPE

Prepared hole

×40

SELECTION FLOW CHART

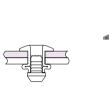
Choose a rivet that best suits your application.


*1. One-sided fastening is accomplished by working on only one side of the assembly.

*2. Two-sided fastening is accomplished by working on both sides of the materials using a fastening jig.

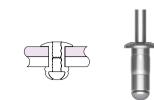
All the products above are compliant with RoHS/ELV:SOC6.

In this brochure, the materials to be fastened are referred to as base materials or workpieces. Fastening and riveting may be used interchangeably.


Blind rivet

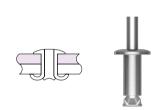
Standard Type

Standard rivet


Blind rivet most commonly used for multiple application in various industries. It is globally recognized as a standard fastener.

GT Type

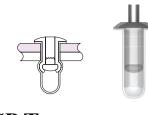
High strength clamping


The large-diameter fastens the workpieces tightly together.

FX Type

Various fastening ranges

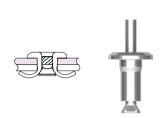
The rivet in one size fits a wide range of material thicknesses. It is characterized by bright finish and high strength clamping.



PL Type

Semi-tublular rivet

For soft materials


The sleeve spreads widely in four petal-like parts that fasten the materials together. It is mainly used to fasten soft materials, such as plywood and plastic.

CP Type

Maximum sealing

The rivet provides maximum air sealed fastening, thanks to its plastic cap. It also prevents galvanic corrosion between different metals.

PLX Type

Self-piercing rivet

Mandrel head fixed type

Fastening the fixed mandrel head will reduce abnormal noise and stop running water

Self-Piercing Rivet

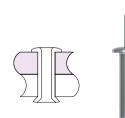
The rivet pierces through the materials while

fastening them together. A work hole does

Fukui Byora's rivet setter with an automatic rivet

feeder as standard equipment will dramatically

improve efficiency in fastening work.

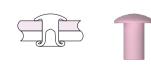

Process reduction.

Rivet setter

not need to be made in advance.

Rivet Setter

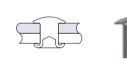
Power saving



HL Type

Lower buckling

By maintaining the height of the buckling side low, different design variations are available.


Plastic rivet

Roll-Up Rivet

Environmental friendliness

The plastic, semi-tubular rivet is fastened at normal temperature and is environmentally friendly. Various colors are available.

Semi-Tubular Rivet

General use Secure and uniform fastening

e-Power Rivet

Higher strength

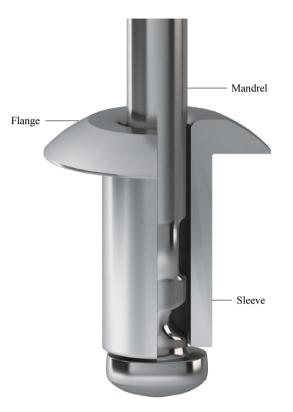
It has twice the fastening strength of the rollup rivet. Standard type

FX type

CP type

GT type

PL type


Rivet setter

2

BLIND RIVET

Easy, secure and speedy fastening from one side of base materials

Structure of blind rivet

Features

Easy, secure and speedy fastening

A blind rivet is very easy to fasten even for a novice. The rivet can be fastened easily, securely, and utilizing a lightweight hand tool.

Fastened with access to only one side of assembly

A blind rivet can fasten workpieces together with access to only one side of each of them. The ideal application in which to use a blind rivet is when the rear side of the mating piece is not accessible with a jig or when the product is sealed up, or is large or hard to handle.

Reliable fastening

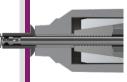
A blind rivet is very high in fastening reliability and used for various uses in various industries. It securely fastens dissimilar materials low in weldability, such as aluminum and iron.

Reduction in initial investment

Using an inexpensive hand tool, the initial investment is low

Fastening process

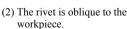
① Attach the rivet to the hand tool.



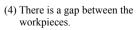
② Insert the rivet into the mating hole.

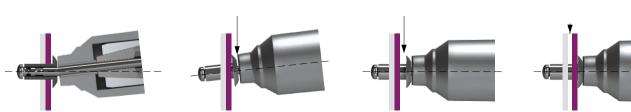
③ Press the tool against the workpieces and pull the trigger.

④ Fastening is complete.

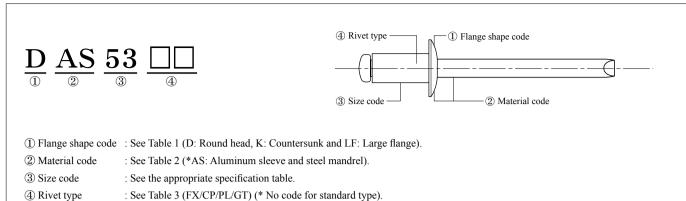

Handling precautions

1. Selection of hand tool


Choose a hand tool that meets the required fastening capability with the size and material of the blind rivet used. Choose a suitable tool, otherwise, it may result in improper fastening.


2. If the rivet is installed in the situations below, it may result in improper fastening or malfunction of the hand tool.

(1) The tool is tilted.



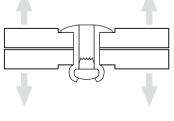
(3) There is a gap between the rivet head and the workpiece.

Product coding system

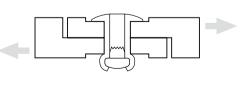
Flange shape code (Table 1)

Code	Туре	Shape	Features
D	Round head		Standard flange shape
K	Countersunk		The rivet head is flush with the surface of one of the mating parts.
LF	Large flange		The flange diameter is large. It is suitable for soft materials.

Material code (Table 2)


Code	Sleeve material	Mandrel material
AS	Aluminum A5154 / A5052	Hard steel wire
AA	Aluminum A5052	High-tensile aluminum wire
SS	Steel SWCH	Hard steel wire
CS	Austenitic stainless steel	Hard steel wire
CC	Austenitic stainless steel	High-tensile stainless steel wire

Rivet type (Table 3)


Туре	Features
Standard	Blind rivet most commonly used in various industries.
FX	The rivet in one size fits a wide range of material thicknesses.
СР	The rivet provides highly airtight fastening, thanks to its plastic cap.
PL	The sleeve spreads widely in four petal-like parts that fasten the materials. It is mainly used to fasten soft materials.
GT	The large-diameter curls pull the workpieces tightly.

Tensile/shear strength test methods

-	Test conditions
[Test specimen]	
 Material 	: Heat-treated steel plate
 Thickness 	: 80 to 100% of recommended
	maximum material thickness
Work hole diameter	er : Recommended work hole diameter
[Testing machine]	
 Testing machine 	: Compliant with the JIS B 7721
Test speed	: 15 mm/min

(Tensile strength test)

(Shear strength test)

- 1. The tensile strength test method and the shear strength test method complies with the JIS B 1087.
- 2. The strength values given in the brochure are measurement results obtained by our testing. They may greatly vary with the type or thickness of materials used. In designing, be sure to allow a safety factor of at least three to one.

PL type

Standard type

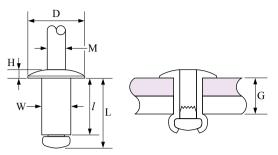
FX type

CP type

Standard Type

[MOVIE] http://www.byora.co.jp/index/products/movies/blind_st.html

Product code


2 Material code ③ Size code

① Flange shape code (D: Round head, K: Countersunk and LF: Large flange) (AS, AA, SS, CS and CC * See the specification table.) (* See the specification table.)

AS specification table

Blind rivet most commonly used for multiple application in various industries. It is globally recognized as a standard fastener.

Symbols of standard dimensions and installation diagram

(Round head or large flange)

(Countersunk)

W(mm) (m 2.4 2 3.2 3	ameter (mm)	code 32 33 34 35 41 42 43 44 45 46 47 48 52	$\begin{array}{r} \mbox{fastening range} \\ \mbox{G(mm)} \\ \mbox{*4 0.5 $\sim $ 3.2 $} \\ \mbox{3.2 $\sim $ 4.8 $} \\ \mbox{4.8 $\sim $ 6.4 $} \\ \mbox{6.4 $\sim $ 8.0 $} \\ \mbox{3.2 $\sim $ 4.8 $} \\ \mbox{4.8 $\sim $ 6.4 $} \\ \mbox{6.4 $\sim $ 8.0 $} \\ \mbox{8.0 $\sim $ 9.6 $} \\ \mbox{9.6 $\sim $ 11.2 $} \end{array}$	(mm) 5.7 7.3 8.9 11.0 4.9 6.5 8.1 9.7 11.3 12.9	(mm) 7.5 9.1 10.7 12.8 7.0 8.6 10.2 11.8 11.8	(m D 4.7	H 0.8	(m D 4.7 —	H 0.9 —	(m D	H —	(mm) 1.5	(kl Tensile 0.61	Shear 0.44
3.2 3		33 34 35 41 42 43 44 45 46 47 48	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	7.3 8.9 11.0 4.9 6.5 8.1 9.7 11.3	9.1 10.7 12.8 7.0 8.6 10.2 11.8	4.7	0.8	_	_	_	_	1.5	0.61	0.44
3.2 3		34 35 41 42 43 44 45 46 47 48	$\begin{array}{cccc} 4.8 &\sim & 6.4 \\ \hline 6.4 &\sim & 8.0 \\ \hline 0.5 &\sim & 1.6 \\ 1.6 &\sim & 3.2 \\ 3.2 &\sim & 4.8 \\ 4.8 &\sim & 6.4 \\ 6.4 &\sim & 8.0 \\ 8.0 &\sim & 9.6 \end{array}$	8.9 11.0 4.9 6.5 8.1 9.7 11.3	10.7 12.8 7.0 8.6 10.2 11.8	4.7	0.8	_	_	_	_	1.5	0.61	0.44
3.2 3		35 41 42 43 44 45 46 47 48	$\begin{array}{cccc} 6.4 &\sim & 8.0 \\ \hline 0.5 &\sim & 1.6 \\ 1.6 &\sim & 3.2 \\ 3.2 &\sim & 4.8 \\ 4.8 &\sim & 6.4 \\ 6.4 &\sim & 8.0 \\ 8.0 &\sim & 9.6 \end{array}$	11.0 4.9 6.5 8.1 9.7 11.3	12.8 7.0 8.6 10.2 11.8	т ./	0.0	_	_			1.5	0.01	0.44
	3.3	41 42 43 44 45 46 47 48	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4.9 6.5 8.1 9.7 11.3	7.0 8.6 10.2 11.8			_					85 1.34	
	3.3	42 43 44 45 46 47 48	$\begin{array}{rrrr} 1.6 &\sim& 3.2\\ 3.2 &\sim& 4.8\\ 4.8 &\sim& 6.4\\ 6.4 &\sim& 8.0\\ 8.0 &\sim& 9.6 \end{array}$	6.5 8.1 9.7 11.3	8.6 10.2 11.8				_					
	3.3	43 44 45 46 47 48	$3.2 \sim 4.8$ $4.8 \sim 6.4$ $6.4 \sim 8.0$ $8.0 \sim 9.6$	8.1 9.7 11.3	10.2 11.8									
	3.3	44 45 46 47 48	$4.8 \sim 6.4$ $6.4 \sim 8.0$ $8.0 \sim 9.6$	9.7 11.3	11.8									
	3.3	45 46 47 48	$6.4 \sim 8.0$ $8.0 \sim 9.6$	11.3										
	5.5	46 47 48	8.0~ 9.6			6.4	1.0	6.4	1.1	8.0	1.0	1.85	1.24	0.90
4.0 4		47 48		12.9	13.4	0.4	1.0	0.4	1.1	9.5	1.2	1.65	1.34	0.90
4.0 4		48	9.6 ~ 11.2	12.7	15.0									
4.0 4				15.4	17.5									
4.0 4	_	52	*411.2 ~ 12.8	17.1	19.2									
4.0 4		52	1.0 ~ 3.2	7.3	9.9									
4.0 4		53	3.2~ 4.8	8.9	11.5	8.0					1.3 1.5	2.25		1.53
4.0 4		54	4.8~ 6.4	10.5	13.1									
	4.1	55	6.4 ~ 8.0	12.1	14.7		1.2	8.0	1.4	10.0 12.0			2.17	
		56	8.0~ 9.6	13.7	16.3					12.0	1.5			
		57	9.6 ~ 11.2	15.3	17.9									
		58	11.2 ~ 12.8	16.9	19.5									
		62	1.6 ~ 3.2	8.1	10.9									
		63	3.2~ 4.8	9.7	12.5									
		64	4.8~ 6.4	11.3	14.1									
		65	6.4~ 8.0	12.9	15.7					12.0	1.7			
4.8 4	4.9	66	8.0~ 9.6	14.5	17.3	9.5	1.5	9.5	1.6	13.0	1.8	2.65	3.10	2.12
		67	9.6 ~ 11.2	16.1	18.9					15.5	2.0			
		68	11.2 ~ 12.8	17.7	20.5									
		610	12.8 ~ 16.0	21.2	24.0									
		612	16.0 ~ 19.2	24.4	27.2									
		84	3.2 ~ 6.4	12.9	16.7									
		86	6.4 ~ 9.6	16.1	19.9	10.0		10.0						
6.4 6	6.5	88	9.6~12.8	19.3	23.1	12.8	1.7	12.8	2.5	-	—	3.82	4.95	3.23
	0.0	812	12.8 ~ 19.2	25.7	29.5									

*1. Large flange rivets are made to order. *2. The L lengths are given as guidelines. *3. The strength values are obtained through our own testing.

*4. In the case of countersunk rivets, the range is between 1.6 and 3.2.

AA specification table

AA (Sleeve: Aluminum A5052 / fabric, Mandrel: High-tensile aluminum wire / fabric)

Sleeve diameter	Mating hole diameter	Size code	Recommended fastening range	<i>l</i> (mm)	L ^{*2} (mm)		d head m)	Count (m			flange ^{*1} m)	M (mm)		
W(mm)	(mm)	coue	G(mm)	(IIIII)		D	Н	D	Н	D	Н		Tensile S 0.36 0 0.91 0 1.39 0 2.11 1	Shear
2.4	2.5	32	1.6~ 3.2	5.5	7.3	4.7	0.8	4.7	0.9		_	1.6	0.36	0.31
2.1	2.5	34	3.2 ~ 6.4	9.0	10.8	-1.7	0.0	-1.7	0.9			1.0	0.50	0.51
		41	0.5~ 1.6	5.2	7.2			_						
		42	1.6~ 3.2	6.0	8.0									
		43	3.2~ 4.8	7.6	9.6					8.0	1.0			
3.2	3.3	44	4.8~ 6.4	9.2	11.2	6.4	1.0	6.4	1.1	8.0 9.5	1.0	2.0	0.91	0.66
		45	6.4 ~ 8.0	10.7	12.7					9.3	1.2			
		46	8.0~ 9.6	12.3	14.3									
		48	9.6~12.8	16.2	18.2									
		52	*4 1.0 ~ 3.2	6.6	9.2									
		53	3.2~ 4.8	8.2	10.8	8.0				9.5 12.0	1.2		1.39	0.96
4.0	4.1	54	4.8~ 6.4	9.7	12.3		1.2	8.0	1.4		1.2 1.5	2.6		
		56	6.4 ~ 9.6	12.9	15.5					12.0	1.5			
		58	9.6~12.8	16.1	18.7									
		62	1.6 ~ 3.2	7.1	9.9									
		64	3.2~ 6.4	10.3	13.1					12.0	1.8 2.0			
4.8	4.9	66	6.4 ~ 9.6	13.5	16.3	9.5	1.5	9.5	1.6	13.0 15.5		3.0	2.11	1.46
		68	9.6 ~ 12.8	16.7	19.5					15.5	2.0			
		610	12.8 ~ 16.0	19.8	22.6									
		82	1.6 ~ 3.2	9.2	13.0									
		84	3.2 ~ 6.4	12.6	16.4									
6.4	6.5	86	6.4 ~ 9.6	16.6	20.4	12.8	1.7	—	—	—	—	4.0	3.83	2.54
		88	9.6 ~ 12.8	20.5	24.3									
		812	12.8 ~ 19.2	26.0	29.8									

SS specification table

SS (Sleeve: Steel SWCH / trivalent chromate, Mandrel: Hard steel wire / zinc plating)

Sleeve diameter	Mating hole diameter	Size code	Recommended fastening range	l (mm)	L ^{*2} (mm)	Round (m	l head m)	(m	ersunk m)	(m	flange ^{*1} m)	M (mm)	Stren (k)	ngth ^{*3} N)
W(mm)	(mm)	coue	G(mm)	(mm)	(IIIII)	D	Н	D	Н	D	Н		Tensile	Shear
2.4	2.5	32	*4 0.5 ~ 3.2	5.7	7.5	4.7	0.8	4.7	0.9	_		1.5	0.94	0.78
2.4	2.5	33	3.2~ 4.8	7.3	9.1	4.7	0.8	4.7	0.9			1.5	0.94	0.78
		41	0.5~ 1.6	4.9	7.0			—	—					
		42	1.6~ 3.2	6.5	8.6									
		43	3.2~ 4.8	8.1	10.2									
3.2	3.3	44	4.8~ 6.4	9.7	11.8	6.4	1.0	6.4	1.1	8.0	1.0	1.92	1.73	1.43
5.2	5.5	45	6.4~ 8.0	11.3	13.4	0.4	1.0	0.4	1.1	9.5	1.2	1.92	1.75	1.45
		46	8.0~ 9.6	12.9	15.0									
		47	9.6~11.2	14.5	17.5									
		48	11.2 ~ 12.8	16.4	19.2									
		52	*4 1.0 ~ 3.2	7.3	9.9									
		53	3.2~ 4.8	8.9	11.5									
4.0		54	4.8~ 6.4	10.5	13.1					8.0	1.0			
4.0	4.1	55	6.4 ~ 8.0	12.1	14.7	8.0	1.1	8.0	1.4	8.0 9.5	1.0	2.42	2.84	2.0
	56	56	8.0~ 9.6	13.7	16.3									
		57	9.6~11.2	15.3	17.9									
		58	11.2 ~ 12.8	16.9	19.5									
		62	1.6~ 3.2	8.1	10.9									
		63	3.2~ 4.8	9.7	12.5									
		64	4.8~ 6.4	11.3	14.1									
		65	6.4 ~ 8.0	12.9	15.7					13.0	1.8			
4.8	4.9	66	8.0~ 9.6	14.5	17.3	9.5	1.5	9.5	1.6	15.0	2.0	2.94	4.37	3.35
		67	9.6~11.2	16.1	18.9					10.0	2.0			
		68	11.2 ~ 12.8	17.7	20.5									
		610	$12.8 \sim 16.0$	20.9	24.0									
		612	16.0 ~ 19.2	24.1	27.2									
		84	3.2~ 6.4	12.9	16.7									
6.4	6.5	86	6.4~ 9.6	16.1	19.9	12.8	1.7					3.82	7.28	5 86
0.4	0.5	88	9.6~12.8	19.3	23.1	12.0	1./					5.62	1.20	5.86
		812	12.8 ~ 19.2	25.7	29.5									

*1. Large flange rivets are made to order. *2. The L lengths are given as guidelines. *3. The strength values are obtained through our own testing.

*4. In the case of countersunk rivets, the range is between 1.6 and 3.2.

Standard Type

CS specification table

CS (Sleeve: Austenitic stainless steel / fabric, Mandrel: Hard steel wire / zinc plating)

Sleeve diameter	Mating hole diameter	Size code	Recommended fastening range	<i>l</i> (mm)	L ^{*1} (mm)	Round (m			ersunk m)	M (mm)	Strength ^{*2} (kN)	
W(mm)	(mm)	coue	G(mm)	(IIIII)	(11111)	D	Н	D	Н	(mm)	Tensile	Shear
		41	0.5~ 1.6	4.5	6.9			—	—			
		42	1.6~ 3.2	6.6	9.0		1.0					
3.2	2.2	43	3.2 ~ 4.8	8.6	11.0	6.4		6.4	1.1	2.0	2.59	2.20
3.2	3.3	44	4.8 ~ 6.4	10.2	12.6	6.4				2.0	2.59	2.20
		46	6.4 ~ 9.6	13.7	16.1			_	_			
		48	9.6~12.8	17.7	20.1		0.8	_	_			
		52	1.6 ~ 3.2	7.1	10.5							
	4.1	53	3.2 ~ 4.8	8.6	12.0	8.0	1.3				4.04	3.48
4.0		54	4.8~ 6.4	10.2	13.6			8.0	1.6 2	2.5		
		56	6.4 ~ 9.6	13.9	17.3							
		58	9.6~12.8	17.7	21.1							
		62	1.6 ~ 3.2	7.1	10.5			—	—			
		64	3.2~ 6.4	10.8	14.2			9.5	1.9			
4.8	4.9	66	6.4 ~ 9.6	14.0	17.4	9.5	1.7	9.5	1.9	3.0	5.41	4.44
4.0	4.9	68	9.6 ~ 12.8	17.2	20.6	7.5		—	—	3.0	5.41	4.44
		610	12.8 ~ 16.0	20.0	23.4			—	—			
		612	16.0 ~ 19.2	23.6	27.1		1.2	_				

CC specification table

CC (Sleeve: Austenitic stainless steel / fabric, Mandrel: High-tensile stainless steel wire / fabric)

Sleeve diameter	Mating hole diameter	Size code	Recommended fastening range	<i>l</i>	L*1		d head m)		ersunk m)	M (mm)	Stre (k	ngth ^{*2} N)
W(mm)	(mm)	coue	G(mm)	(mm)	(mm)	D	Н	D	Н	(mm)	Tensile	Shear
2.4	2.5	32	0.5 ~ 3.2	6.0	7.8	47	0.9	—	—	1 40	1 40	1.40
2.4	2.5	34	3.2 ~ 4.8	8.8	10.7	4.7	0.8	_	_	1.48	1.48	1.40
		41	0.5 ~ 1.6	4.5	6.9			—	_			
		42	1.6 ~ 3.2	6.6	9.0							
3.2	3.3	43	3.2 ~ 4.8	8.6	11.0	6.4	1.0	6.4	1.1	2.0	2.59	2.20
5.2	5.5	44	4.8 ~ 6.4	10.2	12.6	0.4	1.0			2.0	2.39	2.20
		46	6.4 ~ 9.6	13.7	16.1			—	—			
		48	9.6 ~ 12.8	17.7	20.1			—	—			
		52	1.6~ 3.2	7.1	10.5							
		53	3.2~ 4.8	8.6	12.0							
4.0	4.1	54	4.8~ 6.4	10.2	13.6	8.0	1.3	8.0	1.6	2.5	4.04	3.48
		56	6.4 ~ 9.6	13.9	17.3							
		58	9.6 ~ 12.8	17.7	21.1							
		62	1.6~ 3.2	7.1	10.5			—	—			
		64	3.2 ~ 6.4	10.8	14.2							
4.8	4.9	66	6.4 ~ 9.6	14.0	17.4	9.5	1.7	9.5	1.9	3.0	5.41	4.44
4.0	4.9	68	9.6~12.8	17.2	20.6	7.5	1./	7.5	1.9	5.0	5.41	4.44
		610	12.8 ~ 16.0	20.0	23.4							
		612	16.0 ~ 19.2	23.6	27.1			_	_			

*1. The L lengths are given as guidelines. *2. The strength values are obtained through our own testing.

Remarks) (1) The steel mandrel is plated with zinc. For trivalent chromate plating, please ask us.

(2) The steel sleeve is plated with trivalent chromate.

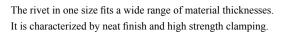
(3) The rivets with the following specifications are made to order. (i) Long mandrel (ii) Painted head and (iii) Fastening range G exceeding 19.2 mm

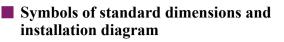
(4) The standard dimensions are subject to change without notice.

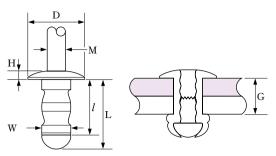
(5) Please ask us when the required fastening range exceeds the recommended range or when it is near lower limit.

FX Type / Various fastening ranges

[MOVIE] http://www.byora.co.jp/index/products/movies/blind_fx.html


Product code




2 Material code3 Size code4 Rivet type

(D: Round head and LF: Large flange)
(AS and SS * See the specification table.)
(* See the specification table.)
(FX)

AS specification table

(Round head)

(Large flange)

AS (Sleeve: Aluminum A5052 / fabric,	Mandrel: Hard steel wire / zinc plating)
,	1 6/

Sleeve Mating hole diameter		Size code Recommended fastening range		l	L^{*2}	Round head (mm)		Large flange ^{*1} (mm)		M (mm)	Strength ^{*3} (kN)	
W(mm)	(mm)	coue	G(mm)			D	Н	D	Н	(11111)	Tensile	Shear
3.2	3.3 ~ 3.4	401	0.8~ 4.7	8.1	10.2	6.4	1.0	8.0	1.0	1.92	1.0	0.7
5.2 5.3 ~ 5.4	402	4.0~ 7.9	11.1	13.2	0.4	1.0	8.0	1.0	1.92	1.0	0.7	
		501	1.2 ~ 6.3	9.3	11.8							
4.0	4.1 ~ 4.2	502	4.0~ 9.5	13.0	15.5	8.0	1.2	12.0	1.5	2.42	1.5	1.1
		503	6.4 ~ 12.7	18.0	20.5							
		601	1.6~ 6.4	10.5	13.4							
4.8	4.9 ~ 5.0	602	4.8~11.4	15.8	18.7	9.5	1.5	15.5	2.0	2.04	2.5	1.7
4.8	4.9~3.0	603	8.4 ~ 12.7	17.9	20.8	9.5	1.5	13.3	2.0	2.94	2.3	1./
	_	604	12.7 ~ 19.8	25.9	28.8							

SS specification table

SS (Sleeve: Steel SWCH / trivalent chromate, Mandrel: Hard steel wire / zinc plating)

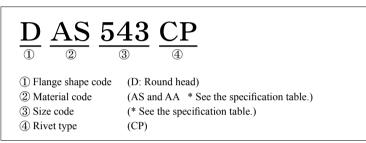
Sleeve diameter	Mating hole diameter	Size code	Recommended fastening range	l	L*2	Round (m	l head m)	Large (m	flange ^{*1} m)	M		rength ^{*3} (kN)
W(mm)	(mm)	coue	G(mm)			D	Н	D	Н	(mm)	Tensile	Shear
3.2	3.3~3.4	401	0.8~ 4.7	8.1	10.2	6.4	1.0	8.0	1.0	2.02	1.3	1.1
5.2	5.5~5.4	402	4.0~ 7.9	11.1	13.2	0.4	1.0	8.0	1.0	2.02	1.5	1.1
		601	1.6~ 6.4	10.5	13.6							
4.8	4.9~5.0	602	4.8~11.4	15.8	18.9	9.5	1.5	15.5	2.0	3.12	3.4	2.6
4.8	4.9~3.0	603	8.4~12.7	17.9	21.0	9.3	1.3	13.3	2.0	5.12	5.4	2.0
		604	12.7 ~ 19.8	25.9	29.0							

*1. Large flange rivets are made to order. *2. The L lengths are given as guidelines. *3. The strength values are obtained through our own testing.

Remarks) (1) The steel mandrel is plated with zinc. For trivalent chromate plating, please ask us.

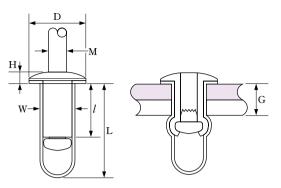
(2) The steel sleeve is plated with trivalent chromate.

(3) The standard dimensions are subject to change without notice.


(4) Please ask us when the required fastening range exceeds the recommended range or when it is near lower limit.

$CP \ Type \ / \ Maximum \ sealing$

[MOVIE] http://www.byora.co.jp/index/products/movies/blind_cp.html


Product code

AS specification table

The rivet provides maximum air sealed fastening, thanks to its plastic cap. It also prevents galvanic corrosion between different metals.

Symbols of standard dimensions and installation diagram

Airtightness

There will be no water leakage under the pressure test conditions below.

conditions below.						
Product	DAS543					
Work hole diameter	4.1 mm					
Pressurizing time	8 hours					
Pressure	0.9 MPa					

AS (Sleeve: Aluminum A5154 / fabric, Mandrel: Hard steel wire / zinc plating)

Sleeve diameter	Mating hole diameter	Size	Recommended fastening range	l	L^{*1}	Round head (mm)		M	Stre (k	ngth ^{*2} N)
W(mm)	(mm)	code	G(mm)			D	Н	(mm)	Tensile	Shear
		541	1.0 ~ 1.6	4.6						
4.0	4.1	542	1.6 ~ 3.2	6.2	12.0	6.4	1.3	1.85	1.1	0.9
		543	3.2 ~ 4.8	7.8						

AA specification table

AA (Sleeve: Aluminum A5052 / fabric, Mandrel: High-tensile aluminum wire / fabric)

Sleeve diameter	Mating hole diameter	Size code	Recommended fastening range	l	L^{*1}	Round head (mm)		M		ngth ^{*2} N)
W(mm)	(mm)	coue	G(mm)			D	Н	(mm)	Tensile	Shear
		541	1.0 ~ 1.6	4.9						
4.0	4.1	542	1.6 ~ 3.2	5.7	12.0	6.4	1.3	2	0.4	0.66
		543	3.2 ~ 4.8	7.3						

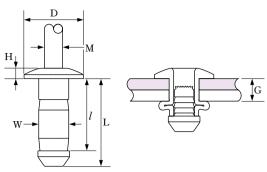
This product is made to order.

*1. The L lengths are given as guidelines. *2. The strength values are obtained through our own testing.

Remarks) (1) The steel mandrel is plated with zinc. For trivalent chromate plating, please ask us.

(2) The standard dimensions are subject to change without notice.

(3) Please ask us when the required fastening range exceeds the recommended range or when it is near lower limit.


$GT \ Type \ / \ {\rm High \ strength \ clamping}$

[MOVIE] http://www.byora.co.jp/index/products/movies/blind_gt.html

The large-diameter fastens the workpieces tightly together.

Symbols of standard dimensions and installation diagram

Product code

$\frac{\mathrm{D}}{\mathrm{D}} \frac{\mathrm{CC}}{\mathrm{2}} \frac{\mathrm{6}}{\mathrm{3}}$	<u> </u>
 Flange shape code Material code Size code Rivet type 	 (D: Round head) (CC * See the specification table.) (* See the specification table.) (GT)

CC specification table

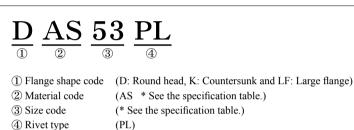
CC (Sleeve: Austenitic stainless steel / fabric, Mandrel: High-tensile stainless steel wire / fabric)

Sleeve diameter	Mating hole diameter		Recommended fastening range	l	L^{*1}	Round head (mm)		M (mm)	Stre (k	ngth ^{*2} N)
W(mm)	(mm)	code	G(mm)			D	Н		Tensile	Shear
		62	1.6 ~ 3.2	9.5	12.0				5.4	4.5
4.8	4.9	64	3.2 ~ 4.8	12	14.5	9.5	1.7	3.2	5.4	4.5
		66	6.4 ~ 8.6	15	17.5				5.4	8.5

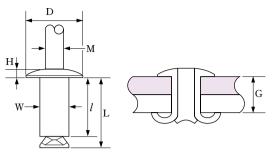
*1. The L lengths are given as guideline. *2. The strength values are obtained through our own testing.

Remarks) (1) The standard dimensions are subject to change without notice.

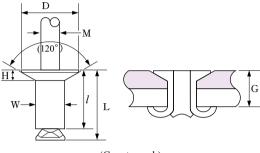
(2) Please ask us when the required fastening range exceeds the recommended range or when it is around the lower limit.


PL Type / For soft materials

[MOVIE] http://www.byora.co.jp/index/products/movies/blind_pl.html


Product code

AS specification table



The sleeve spreads widely in four petal-like parts that fasten the materials together. It is mainly used to fasten soft materials, such as plywood and plastic.

Symbols of standard dimensions and installation diagram

(Round head or large flange)

(Countersunk)

AS (Sleeve: Aluminum A5154 / fabric, Mandrel: Hard steel wire / zinc plating)

Sleeve diameter	Mating hole diameter	Size code	Recommended fastening range	l	L*2		l head m)		ersunk ^{*1} m)	Large (m	flange ^{*1} m)	M	Stren (kl	ngth ^{*3} N)
W(mm)	(mm)	coue	G(mm)			D	Н	D	Н	D	Н	(mm)	Tensile	Shear
		43	*4 1.0 ~ 4.5	8.1	10.1									
2.2	2.4	44	4.5~ 6.0	9.7	11.7	6.4	1.0	6.4	1.1	8.0	1.0	1.05	0.0	0.0
3.2	3.4	46	6.0 ~ 9.2	12.9	14.9	6.4	1.0	6.4	1.1	9.5	1.2	1.85	0.8	0.8
		48	9.2 ~ 12.4	16.8	18.8									
		52	*5 1.0 ~ 2.6	7.3	9.7									
		53	*5 1.2 ~ 4.5	8.9	11.3									
4.0	4.2	54	4.5~ 6.1	10.5	12.9	8.0	1.2	8.0	1.4	10.0 12.0	1.3 1.5	2.25	1.3	1.3
		56	6.1 ~ 9.3	13.7	16.1					12.0	1.5			
		58	9.3 ~ 12.5	16.9	19.3									
		63	*5 1.5 ~ 4.6	9.7	12.4									
		64	4.6~ 6.1	11.3	14.0					12.0	1.7			
4.8	5.0	66	6.1 ~ 9.2	14.5	17.2	9.5	1.5	9.5	1.6	13.0	1.8	2.65	2.0	2.1
		68	9.2 ~ 12.3	17.7	20.4					15.5	2.0			
		610	12.3 ~ 15.5	20.9	23.6									

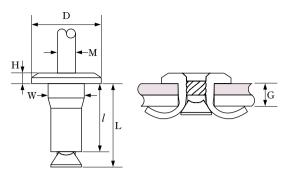
*1. Countersunk and large flange rivets are made to order. *2. The L lengths are given as guidelines. *3. The strength values are obtained through our own testing.

*4. In the case of countersunk rivets, the range is between 1.6 and 4.5. *5. In the case of countersunk rivets, the range is from 2.0.

Remarks) (1) The mandrel is plated with zinc. (Zinc plating is recommended because of the capability of PL rivets.)

(2) The standard dimensions are subject to change without notice.

(3) Please ask us when the required fastening range exceeds the recommended range or when it is around the lower limit.


Warning Do not point the rivet setter at another person while riveting. (The mandrel may be broken and the head may fly out.)

$PLX \ Type \ / \ Mandrel \ head \ fixed \ type$

Fastening the fixed mandrel head will reduce abnormal noise and stop running water.

Symbols of standard dimensions and installation diagram (PAT 5643122)

Product code

$\frac{\mathrm{D}}{\mathrm{D}} \frac{\mathrm{AS}}{\mathrm{D}} \frac{\mathrm{6}}{\mathrm{C}}$	$\frac{4}{3} \frac{\text{PLX}}{4}$
 Flange shape code Material code Size code Rivet type 	 (D: Round head) (AS * See the specification table.) (* See the specification table.) (PLX)

AS specification table

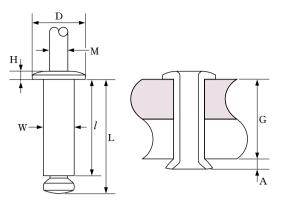
AS (Sleeve: Aluminum A5154 / fabric, Mandrel: Hard steel wire / zinc plating)

Sleeve diameter	Mating hole diameter	Size	Recommended fastening range	l	L *1	Round head (mm)		M (mm)		ngth *2 N)
W(mm)	(mm)	code	G(mm)			D	Н		Tensile	Shear
4.8	5.1	64	2.5 ~ 5.0	12.2	14.6	9.5	2.6	2.65	2.1	2.5

*1. The L lengths are given as guidelines. *2. The strength values are obtained through our own testing.

Remarks) (1) The mandrel is plated with zinc.

(2) The standard dimensions are subject to change without notice.


(3) Specification of the rivet will be designed based on work material, thickness, and diameter of mating hole. Please inquire us for details.

HL Type / Lower buckling

By maintaining the height of the buckling side low, different design variations are available.

Symbols of standard dimensions and installation diagram

Product code

<u>D AS 5</u>	<u>G100 HL</u>	
1 2	3 4	
 Flange shape code Material code Size code Rivet type 	(D: Round head)(AS * See the specification ta(* See the specification table.)(HL)	ble.)

AS specification table

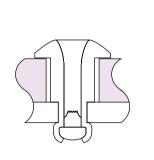
AS (Sleeve: Aluminum A5154 / fabric, Mandrel: Hard steel wire / zinc plating)

Sleeve diameter	Mating hole diameter	Size	Recommended fastening range	l	L^{*1}	A ^{*2}		d head m)	M (mm)	Stre (k	ngth ^{*3} N)
W(mm)	(mm)	code	G(mm)				D	Н	(mm)	Tensile	Shear
4.0	4.1	5G100	10.0	12.5	15.0	1.5	6.7	1.0	2.28	1.7	1.3

*1. The L lengths are given as guidelines. *2. The A lengths are given as guidelines. *3. The strength values are obtained through our own testing.

Remarks) (1) The mandrel is plated with zinc.

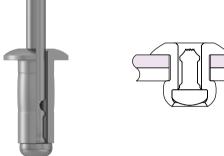
(2) The standard dimensions are subject to change without notice.


(3) Specification of the rivet will be designed based on work material, thickness, and diameter of mating hole. Please inquire us for details.

Examples of Customized Rivets

Stepped rivet

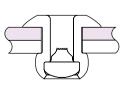
- Features : The height from the seating surface of a workpiece to the flange of a fastened rivet is constant, which serves as a fulcrum pin or a spring catch.
- Uses : Glass louvers, bars and handles

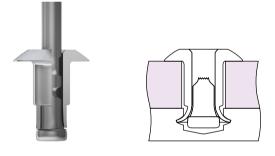

Improved-shear-strength type

Features : The mandrel is brought up to near the head height to enhance the shear strength.

Uses : Reinforcing plates

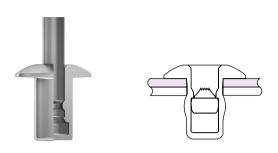
Blind hole fitting type


Features : This rivet can be fastened into a blind hole in the materials. Uses : Building outer and inner walls, cement, and wood



Conductive rivet

Features : The sleeve and mandrel are made of copper alloy. Uses : Terminal blocks, contacts and connectors



In addition to the standard products, we tailor rivets to specific customer needs. Please don't hesitate to ask us.

Sealed type

Features : The sleeve is bag-shaped and great in air tightens. Uses : Shield plugs, outdoor devices and covers

SEMI-TUBULAR RIVET

Secure and uniform fastening is user friendly.

Structure of semi-tubular rivet

Features

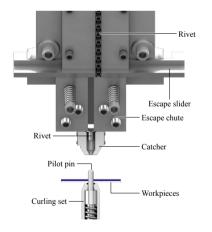
Easy fastening

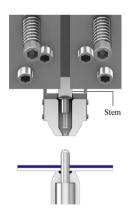
A semi-tubular rivet can be easily and quickly fastened using a rivet setter without any special skills.

Rivet design tailored to specific purpose

Semi-tubular rivets can be made of various materials. They can be tailored to various requirements, such as conductivity and decorative design.

Stable and reliable fastening

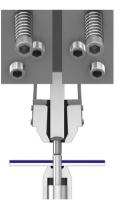

A semi-tubular rivet does not loosen easily and that provides reliable fastening. The rivet installation can be checked visually.

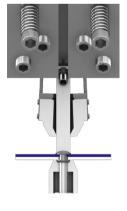

Improvement in working efficiency

Using the rivet instead of the screw, bolt or nut; the assembly efficiency can be drastically improved.

Fastening process

① Insert the pilot pin into the workpieces.

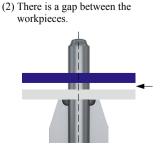



0 The stem descends, pressing

the rivet head.

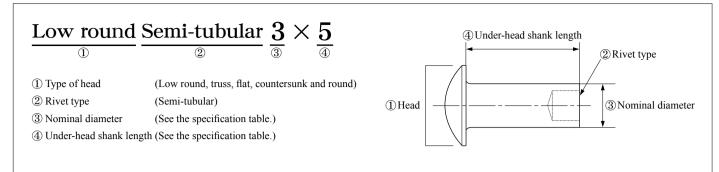
③ At the same time, the catcher descends, holding the rivet.

④ Guided by the pilot pin, the rivet goes through the workpieces and fastening is complete.

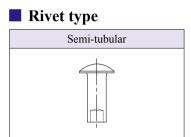


Operating precautions

(1) The workpieces are tilted.


If the rivet is installed in the situations below, it may result in improper fastening.

(3) The pilot pin is not fully out, and interfere with the workpieces.


(4) The curling set is worn.

Types of heads

•					
Low	round	Truss	Flat	Countersunk	Round head

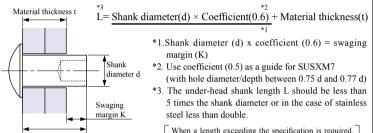
Types of materials and relevant JIS

	Materials		Relevant JIS
	Description	Code	Kelevalit J15
Iron	Carbon steel wire	SWCH	JIS G 3507 "Carbon steels for cold heading"
Brass	Brass wire	C2700W	JIS H 3260 "Copper and copper alloy wires"
Copper	Tough pitch copper wire	C1100W	JIS H 5200 Copper and copper anoy wires
	Aluminum drawn wire	A1070W	
Aluminum	Aluminum drawn wire	A1200W	HC H 4040 "A huminum on chuninum allau mira"
Aluminum		A5052W	JIS H 4040 "Aluminum or aluminum alloy wire"
	Aluminum alloy drawn wire	A5056W	
Stainless steel	Stainless steel wire	SUS430-WR	JIS G 4308 "Stainless steel wire"
Stanness steel	Stamess steel wire	SUSXM7-WR	JIS G 4308 Stamless steel wire

Strength test results by material and shank diameter

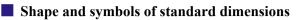
	Strength test results by material and shank diameter												
	Nominal dian	neter	φ1.2	φ1.6	φ2	φ2.5	φ3	φ4	φ5	φ6	φ8		
	SWCH10A	Tensile	0.29	0.49	0.85	1.23	1.69	3.00	4.69	6.76	12.02		
	SWCHIUA	Shear	0.34	0.61	0.96	1.50	2.17	3.86	6.03	8.68	15.43		
	SUS430	Tensile	0.39	0.66	1.14	1.66	2.27	4.03	6.31	9.08	16.15		
	505450	Shear	0.45	0.80	1.26	1.97	2.84	5.05	7.89	11.36	20.20		
	CUCVM7	Tensile	0.48	0.81	1.39	2.03	2.77	4.93	7.71	11.10	19.74		
	SUSXM7	Shear	0.51	0.91	1.42	2.23	3.21	5.71	8.93	12.86	22.86		
	C2700W -	Tensile	0.28	0.47	0.81	1.18	1.62	2.88	4.50	6.48	11.53		
		Shear	0.31	0.55	0.86	1.35	1.95	3.47	5.42	7.81	13.89		
Material	C1100W	Tensile	0.17	0.29	0.50	0.73	0.99	1.77	2.77	3.99	7.09		
Mat	CIIOUW	Shear	0.20	0.37	0.58	0.90	1.30	2.32	3.63	5.23	9.30		
	A1070W	Tensile	0.07	0.12	0.20	0.28	0.40	0.71	1.16	1.76	2.85		
	A10/0w	Shear	0.10	0.18	0.27	0.44	0.60	1.07	1.61	2.25	4.12		
	A1200W	Tensile	0.07	0.13	0.20	0.28	0.40	0.71	1.18	1.79	2.88		
	A1200 W	Shear	0.11	0.18	0.31	0.46	0.60	1.13	1.74	2.33	4.26		
	A 505211/	Tensile	0.13	0.23	0.39	0.54	0.74	1.34	2.18	3.15	5.43		
	A5052W	Shear	0.20	0.35	0.56	0.91	1.18	2.21	3.40	4.56	8.32		
	A 5056W	Tensile	0.17	0.29	0.47	0.60	0.94	1.46	2.61	3.78	6.73		
	A5056W	Shear	0.23	0.40	0.62	1.00	1.30	2.46	3.80	5.20	9.25		

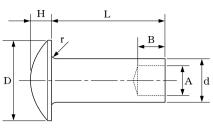
Note) Each of the results above is the measured strength of a rivet alone.

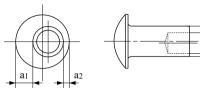

Under-head shank length L

Specification table

Low, Round Semi-Tubular Rivet

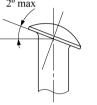

[MOVIE] http://www.byora.co.jp/index/products/movies/semi-tubular.html


Calculation of under-head shank length



When a length exceeding the specification is required, please ask us.

The length obtained by this calculation shall be used as a guide.



(Eccentricity of head)

(Eccentricity of hole)

b₂

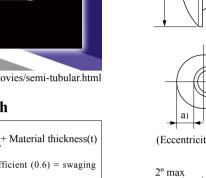
(Tilt of end face)

(Tilt of head)

Unit (mm)

Nominal	diameter	1.2	1.6	2	2.5	3	4	5	6	8
	Standard	1.2	1.6	2	2.5	3	4	5	6	8
d	Tolerance		+0.02 - 0.05		0 - 0		0 - 0	.10	0 - 0.12	0 - 0.15
	Standard	2.2	3	3.7	4.6	5.4	7.2	9	10.5	13.5
D	Tolerance		() 0.3		(_ ()).4	0 - 0.5		0 0.6
TT	Standard	0.3	0.4	0.6	0.9	1.1	1.4	1.8	2.1	2.8
Н	Tolerance		± 0	.05				± 0.1		
	Standard	0.8	1.1	1.3	1.7	2.1	2.8	3.5	4.2	5.6
А	Tolerance	± 0	.04	± 0	.05	± 0	.07	± 0.10		
В	Standard	1.1	1.4	1.8	2.3*4	2.7 *4	3.6*4	4.5 *4	5.4	7.2
В	Tolerance	± (0.1	± 0	.15	± (± 0.2 ± 0.25 ± 0.3		0.3	
r	Max	0.06	0.08	0.1	0	.2	0	.3	0	.4
a1-a2	Max	0.1			0.2 0.3		0.4			
b1-b2	Max		0.1			0.15			0.2	
с	Max		0.2		0	.3		0.4		0.5
L	Min	2	2.5	3	3	3.5	4.5	6	8	10
L	Max	10	14	14	20	22	28	36	42	56
Recommended	Standard	1.25	1.65	2.1	2.65	3.15	4.2	5.3	6.4	8.5
work hole diameter	Tolerance		+ 0 0	0.05		± 0.05				± 0.10

minimum or maximum, leng see the length B list below


Tolerance of length L

Nominal diameter 1.2 1.6 2 2.5 3 4 5 6 8 4 or below ± 0.1 ± 0.15 Over 4 to 10 ± 0.15 ± 0.2 ± 0.25 Ľ Length I Over 10 to 20 ± 0.2 ± 0.25 ± 0.3 Over 20 to 40 ± 0.3 ± 0.4 _ Over 40 ± 0.5 _ ____

Length B list

Unit (mm)

Nominal diameter	2	.5	3	4			5
Length L	3	3.5	3.5	4.5	5	5.5	6
Length B	2.0		2.4		3.2		4.0

17

Truss Semi-Tubular Rivet

Calculation of under-head shank length

Shank

Swaging margin K

diameter d

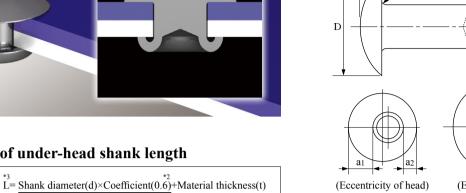
*1

(with hole diameter/depth between 0.75 d and 0.77 d)

When a length exceeding the specification is required,

*3. The under-head shank length L should be less than 5 times the shank diameter or in the case of stainless

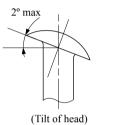
*1. Shank diameter (d) x 0.6 = swaging margin (K) *2. Use coefficient (0.5) as a guide for SUSXM7


The length obtained by this calculation shall be used as a guide.

steel less than double.

please ask us.

Shape and symbols of standard dimensions



(Eccentricity of head)

(Eccentricity of hole)

Α d

(Tilt of end face)

Specification table

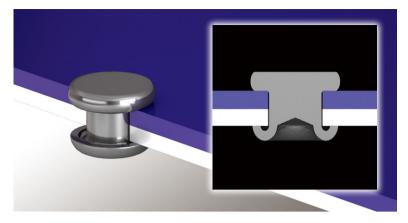
Under-head shank length L

Material thickness t

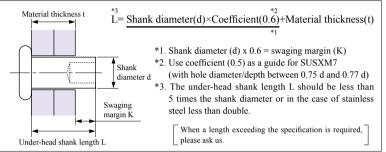
Specifi	cation tab	ole								Unit (mm
Nominal	diameter	1.2	1.6	2	2.5	3	4	5	6	8
	Standard	1.2	1.6	2	2.5	3	4	5	6	8
d	Tolerance		+ 0.02 - 0.05			0 -0.08		.10	0 - 0.12	0 - 0.15
	Standard	2.7	3.6	4.5	5.6	6.6	8.8	11	13	17
D	Tolerance		()).3	·		0 - 0.4			0 0.6
	Standard	0.5	0.7	1	1.3	1.4	1.8	2.4	2.8	3.8
Н	Tolerance		± 0.05					± 0.1		
	Standard	0.8	1.1	1.3	1.7	2.1	2.8	3.5	4.2	5.6
А	Tolerance	± 0.04 ± 0			0.05	± 0	.07		± 0.10	
D	Standard	1.1	1.4	1.8	2.3 *4	2.7 *4	3.6 *4	4.5 *4	5.4	7.2
В	Tolerance	± (0.1	± (± 0.15 ± 0.2 ± 0.25 ± 0.2		0.3			
r	Max	0.1	0.15	0.15	0.2	0.	.3	0.4	0.5	0.6
a1-a2	Max	0.1			0.2			0	.3	0.4
b1-b2	Max		0.1			0.15			0.2	
c	Max		0.2		0	.3		0.4		0.5
T	Min	2	2.5	3	3	3.5	4.5	6	8	10
L	Max	10	14	14	20	22	28	36	42	56
Recommended	Standard	1.25	1.65	2.1	2.65	3.15	4.2	5.3	6.4	8.5
work hole diameter	Tolerance		+ 0	.05			± 0	.05	·	± 0.10

*4. When length L is close to the minimum or maximum, length B shall be 0.8 x d. For details, see the length B list below.

Tolerance of length L

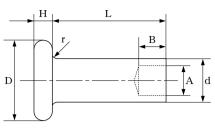

	Nominal diameter	1.2	1.6	2	2.5	3	4	5	6	8
	4 or below		± 0.1		± 0	.15		—		
L	Over 4 to 10	± 0.15			± 0	.2	± 0.25			
Length	Over 10 to 20	± 0.2				.25	± 0.3			
Le	Over 20 to 40	_			± 0	.3	± 0.4			
	Over 40				-			± 0	.5	

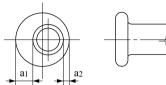
Length B list


Unit (mm)

Nominal diameter	2.5		3	4			5
Length L	3	3.5	3.5	4.5	5	5.5	6
Length B	2.0		2.4		3.2		4.0

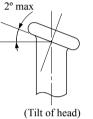
Flat Semi-Tubular Rivet




Calculation of under-head shank length

The length obtained by this calculation shall be used as a guide.

Shape and symbols of standard dimensions



|b2

(Eccentricity of head)

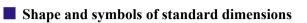
(Eccentricity of hole)

(Tilt of end face)

Specification table

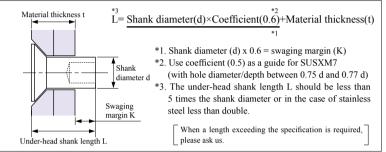
specifi	cation tag	ne								Unit (mm)
Nominal	diameter	1.2	1.6	2	2.5	3	4	5	6	8
	Standard	1.2	1.6	2	2.5	3	4	5	6	8
d	Tolerance		+ 0.02		0		0		0	0
	Tolefunee		- 0.05	0	- 0	0.08	- 0	.10	- 0.12	- 0.15
	Standard	2.2	3	3.7	4.6	5.4	7.2	9	10.5	13.5
D	Tolerance		0 -0.3			0 - 0.4		0 - 0.5	(- (·
Н	Standard	0.3	0.4	0.6	0.9	1.1	1.4	1.8	2.1	2.8
п	Tolerance		± 0.05					± 0.1		
•	Standard	0.8	1.1	1.3	1.7	2.1	2.8	3.5	4.2	5.6
A	Tolerance	± 0	$\pm 0.04 \pm 0.04$			± 0	.07		± 0.10	
В	Standard	1.1	1.4	1.8	2.3*4	2.7*4	3.6*4	4.5*4	5.4	7.2
В	Tolerance	± 0.1 ± 0			0.15 ± 0		0.2	± 0.25	± 0.3	
r	Max	0.06	0.08	0.1	0	.2	0	.3	0	.4
a1-a2	Max	0.1			0.2			0	.3	0.4
b1-b2	Max		0.1			0.15			0.2	
с	Max		0.2		0	.3		0.4		0.5
т	Min	2	2.5	3	3	3.5	4.5	6	8	10
L	Max	10	14	14	20	22	28	36	42	56
Recommended	Standard	1.25	1.65	2.1	2.65	3.15	4.2	5.3	6.4	8.5
work hole diameter	Tolerance		+ ()).05			± 0	.05		± 0.10

*4. When length L is close to the minimum or maximum, length B shall be 0.8 x d. For details, see the length B list below.

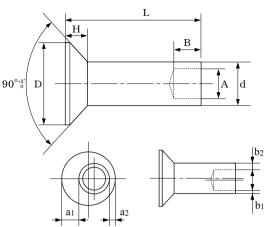

Tolerance of length L


Unit (mm) Nominal diameter 1.2 1.6 2 3 8 2.5 4 5 6 4 or below ± 0.1 ± 0.15 Over 4 to 10 ± 0.15 ± 0.2 ± 0.25 Length L Over 10 to 20 ± 0.2 ± 0.25 ± 0.3 Over 20 to 40 — ± 0.3 ± 0.4 Over 40 ± 0.5 _ ____

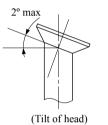
Length B list


Nominal diameter	2.5		3	4			5
Length L	3	3.5	3.5	4.5	5	5.5	6
Length B	Length B 2.		2.4		3.2		4.0

Countersunk, Semi-Tubular Rivet



Calculation of under-head shank length

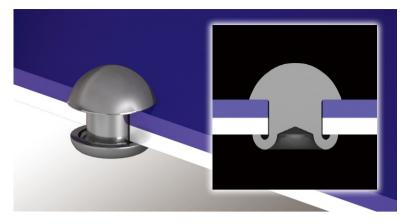


The length obtained by this calculation shall be used as a guide.

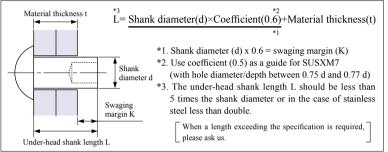
(Eccentricity of head)

(Eccentricity of hole)

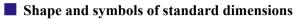
(Tilt of end face)

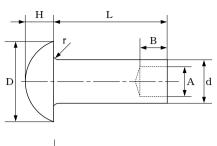

Specification table

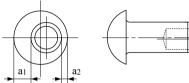
Specifi	cation tab	ole						Unit (mm)
Nominal	diameter	2	2.5	3	4	5	6	8
	Standard	2	2.5	3	4	5	6	8
d	Tolerance	+ 0.02 - 0.05	0-0	0.08	- 0)).10	0 - 0.12	0 - 0.15
	Standard	4	5	6	8	10	12	16
D	Tolerance	0 - 0		(_ () 0.5	0 - 0.6		0 0.7
Н	Approx.	1	1.3	1.5	2	2.5	3	4
	Standard	1.3	1.7	2.1	2.8	3.5	4.2	5.6
A	Tolerance	± 0	0.05	± (0.07		± 0.10	
В	Standard	1.8	2.3	2.7	3.6	4.5	5.4	7.2
В	Tolerance	± 0	0.15	± 0.2 ± 0.25 ± 0.3		0.3		
a1-a2	Max		0	0.2 0.3		0.4		
b1-b2	Max	0.1		0.15			0.2	
с	Max	0.2	0	.3		0.4		0.5
т	Min	4	5	6	8	10	12	16
L	Max	14	20	22	28	36	42	56
Recommended	Standard	2.1	2.65	3.15	4.2	5.3	6.4	8.5
work hole diameter	Tolerance	+ 0 0			± 0	0.05		± 0.10


Tolerance of length L

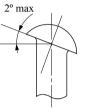
	Tolerance of length L Unit (mm)												
	Nominal diameter	2	2.5 3		4	5 6 8							
	4 or below	± 0.1	± 0.1	15									
L	Over 4 to 10	± 0.15	± 0.2		± 0.25								
ength	Over 10 to 20	± 0.2	± 0.2	25		± 0.3							
Le	Over 20 to 40	—	± 0.3			± 0.4	Ļ						
	Over 40	ver 40 — —				± 0.5							

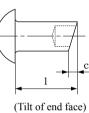

Round, Semi-Tubular Rivet




Calculation of under-head shank length

The length obtained by this calculation shall be used as a guide.





(Eccentricity of head)

(Eccentricity of hole)

b₂

(Tilt of head)

Specification table

Specin	cation tab	ble								Unit (mm)
Nominal	diameter	1.2	1.6	2	2.5	3	4	5	6	8
	Standard	1.2	1.6	2	2.5	3	4	5	6	8
d	Tolerance		+0.02 - 0.05	0 - 0			0 - 0	0.10	0 - 0.12	0 - 0.15
	Standard	2.2	3	3.7	4.6	5.4	7.2	9	10.5	13.5
D	Tolerance		- ()).3	0 - 0.4		•	0 - 0.5) - ()).6
TT	Standard	0.7	1	1.2	1.5	1.8	2.4	3	3.6	4.8
Н	Tolerance		± 0.05					± 0.1		
Α	Standard	0.8	1.1	1.3	1.7	2.1	2.8	3.5	4.2	5.6
A	Tolerance	± 0.04 ± 0			0.05	± 0	.07		± 0.10	
В	Standard	1.1	1.4	1.8	2.3*4	2.7^{*_4}	3.6*4	4.5 *4	5.4	7.2
В	Tolerance	±	0.1	± (0.15	± (0.2	± 0.25	± 0.3	
r	Max	0.06	0.08	0.1	0	2	0	.3	0	.4
a1-a2	Max	0.1			0.2			0	.3	0.4
b1-b2	Max		0.1			0.15			0.2	
с	Max		0.2		0	.3		0.4		0.5
L	Min	2	2.5	3	3	3.5	4.5	6	8	10
L	Max	10	14	14	20	22	28	36	42	56
Recommended	Standard	1.25	1.65	2.1	2.65	3.15	4.2	5.3	6.4	8.5
work hole diameter	Tolerance		+ 0.05 0				± 0	.05		± 0.10

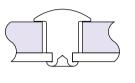
Unit (mm)

*4. When length L is close to the minimum or maximum, length B shall be 0.8 x d. For details, see the length B list below.

Tolerance of length L

Nominal diameter 1.2 1.6 8 2 2.5 3 4 5 6 4 or below ± 0.1 ± 0.15 Over 4 to 10 ± 0.15 ± 0.2 ± 0.25 Length L Over 10 to 20 ± 0.2 ± 0.25 ± 0.3 Over 20 to 40 ± 0.3 ± 0.4 _ Over 40 ± 0.5 _ ____

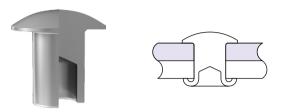
Length B list


Nominal diameter	2	.5	3		5		
Length L	3	3.5	3.5	4.5	5	5.5	6
Length B	2	.0	2.4		3.2		4.0

Examples of Customized Rivets

Shoulder rivet

Features : The rivet height, after being fastened, is constant. It can be used as a fulcrum pin or a spring catch.Uses : Glass louvers, bars and handles



In addition to the standard products, we tailor rivets to specific customer needs. Please don't hesitate to ask us for more information.

Anti-crack rivet

Features : Heat treatment is performed to prevent cracking in curls. Uses : Baby products and nursing care products

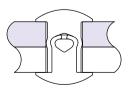
Expansion rivet

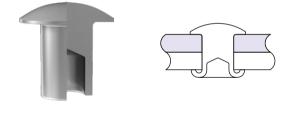
Features : The rivet shank is expanded to ensure alignment of the materials. The dual curls fasten the materials firmly. The curls will not crack.

Uses : Hole punches

Corrosion resistant rivet

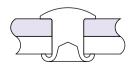
Features : The rivet is highly resistant to corrosion by seawater or chemicals(sulfuric acid and organic acid).


Uses : Marine products and products designed for outdoor use



Double head rivet

- Features : Two different types of rivets are combined into a double head rivet.
- Uses : Wheeled suitcases (handles) and kitchen knife handles


Semi-tubular rivet

Tapered semi-tubular rivet

Features : The rivet is more resistant to buckling than ordinary rivets. It is suitable for fastening a long semi-tubular rivet.

Uses : Automobile-related products and can lever fittings

Head

SELF-PIERCING RIVET

A mating hole in the materials is not required. Dissimilar materials are securely fastened.

Structure of self-piercing rivet

Features

No mating hole required

The self-piercing rivet pierces through the materials while fastening them together. A work hole does not need to be made in advance.

Secure fastening of dissimilar materials

The rivet securely fastens dissimilar materials low in weldability, such as aluminum and iron.

Perfect for fastening color steel plates

The self-piercing rivet fastens materials without heating and repainting.

Environmentally friendly fastening

Fastening with a self-piercing rivet does not cause sparks, smoke, or riveting scrap. It is a clean fastening technique friendly to the working environment.

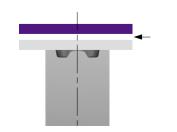
Fastening process

① Place the workpieces on the punch.

⁽²⁾ The stem descends, pressing the rivet head.

Shank

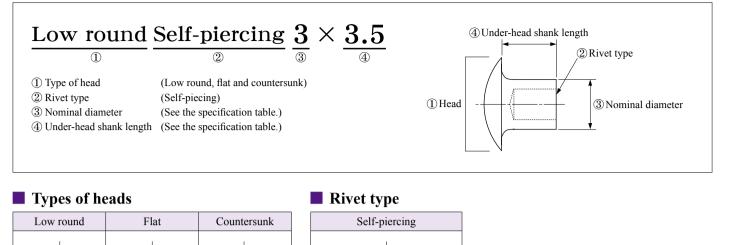
- ③At the same time, the catcher descends, holding the rivet.
- ④ The rivet pierces through the workpieces and fastening is complete.


Operating precautions

If the rivet is installed in the situations below, it may result in improper fastening.

Hole

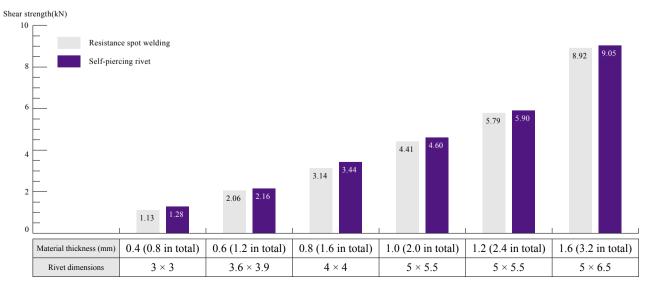
(1) The workpieces are tilted.



(2) There is a gap between the workpieces.

(3) The punch is worn.

Nominal diameter / Under-head shank length


Nominal dian	Nominal diameter / Under-head shank length Unit (mm)														Init (mm)
Nominal diameter	1	2 3		3.6			4				5				
Under-head L	2.0	2.3	3.0	3.5	3.9	4.2	4.5	4.0	4.5	5.0	5.5	5.5	6.0	6.5	7.0
Fastening range	0.3 ₹ 0.6	0.4 ≀ 0.8	0.4 ₹ 1.2	0.9 ≀ 1.6	1.0 ≀ 1.8	1.6 ₹ 2.1	2.1 ₹ 2.6	1.2 ≀ 1.8	1.8 ₹ 2.3	2.3 ≀ 2.8	2.8 ² 3.2	2.0 ² 2.7	2.7 ² 3.2	3.2 ² 3.7	3.7 ₹ 4.3

Note) The table is based on assumption that workpieces of SPCC (painted or plated) with hardness of Hv120 or equivalent are fastened.

Rivet installation criteria (Countersunk rivets and sealed self-piercing rivets (see page 22) are excluded.)

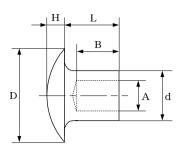
Eccentricity		Space under head	There shall be no space between the head and around the workpiece.
Space under head Head-side workpiece		Height	Rivet shank diameter x 0.5 (guide)
	External	Buck-tail	There shall be no large cracks.
(Curl height including the workpiece)	quality	Constriction	There should be a constriction around full circumference of rivet.
Diameter (Curl diameter including the workpiece)		Eccentricity	The buck-tail shall have an almost uniform shape.
(metalong we workpress)		Diameter	Rivet shank diameter x (1.5 to 1.7) (guide)

Comparison of strength with other fastening techniques

Self-Piercing Rivet

[MOVIE] http://www.byora.co.jp/index/products/movies/self-piercing.html

Name


$\frac{\text{Low round}}{1} \frac{\text{Self-piercing}}{2} \frac{3}{3} \times \frac{3.5}{4}$

① Type of head 2 Rivet type (3) Nominal diameter

(Low round, flat and countersunk) (Self-piecing) (See the specification table.) ④ Under-head shank length (See the specification table.)

Snecification table

Shape and symbols of standard dimensions

Material

Standard specification : Steel (high-carbon steel) Special specification : Stainless steel or aluminum (Please ask us.)

[Tensile strength test method]

*JIS Z 3137

[Shear strength test method]

Rive

*JIS Z 3136

Surface treatment

Zinc plating, nickel plating, chrome plating, Geomet or head baked finish

- spec	Unit (mm)														
Nomina	al diameter	2	2	3		3.6			4				5		
d	Standard	2	2	3		3.6			4				5		
u	Tolerance	+ 0	0.02						± 0.05						
	Standard	3	.7	5.5		6.6		7.4				9.6			
D	Tolerance		0 - 0.3							0 0.4					
Н	Standard	0	.6	1.0		1.2		1.5				1	1.8		
п	Tolerance							±0.05							
	А	1	.2	1.8		2.2			2.4			2	.9		
	В	1	.5						L×0.8						
	L	2.0	2.3	3.5	3.9	4.2	4.5	4.5	5.0	5.5	5.5	6.0	6.5	7.0	
Recomm	nended total	0.3	0.4	0.9	1.0	1.6	2.1	1.8	2.3	2.8	1.8	2.6	3.1	3.6	
	l thickness	l	2	2	ι ι ι			2	2	2	1	2	1	2	
materia	i unekiless	0.6	0.8	1.6	1.8 2.1 2.6			2.3	2.8	3.2	2.6	3.3	3.8	4.3	

Note)(1) The size of a self-piercing rivet is subject to trial fastening.

(2) Please ask us for the following requirements.

(i) The types of workpieces are different from steel plates for general mechanical structures. (ii) The difference in thickness between the two workpieces is extremely large. (iii) The total material thickness is outside the recommended fastening range.

Test method

Test speed

[Testing machine]

Testing machine : Compliant with the

IIS B 7721

: 15 mm/min

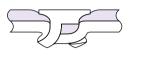
(3) Flat head and countersunk rivets are made to order.

Fastening strength measurement test

Fastening conditions

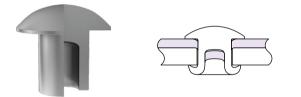
[Test Example] Cold-rolled steel plate, Material thickness: Intermediate value of fastening range [Rivet] Self-piercing rivet (steel)

	Fastening test c		Strength measurement result (kN)				
Rivet	Head-side material thickness (A)	Curl-side material thickness (B)	Total material thickness (A+B)	Tensile fracture	Shear fracture		
2 × 2	0.25	0.25	0.50	0.24	0.58		
3 × 3.5	0.60	0.60	1.20	1.18	1.97		
3.6 × 4.5	1.20	1.20	2.40	2.97	4.21		
4 × 5.5	1.60	1.60	3.20	4.80	6.90		
5 × 7	1.60	2.30	3.90	9.10	11.20		


Note) The strength values given in the brochure are measurement results obtained by our testing. They may vary with the type or thickness of materials used. In designing, be sure to allow a safety factor of at least three to one.

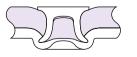
Examples of Customized Rivets

Three-legged rivet


Features : Scrap by punching of the workpieces will not to be generated. The workpieces or the rivet won't turn. Uses : Noise barriers, automobiles and building structures

Half piercing rivet

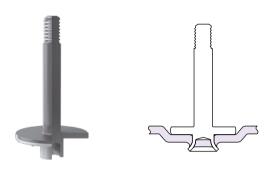
- Features : By making a hole in the thicker workpiece in advance, positioning is enabled using the hole. The half piercing rivet can fasten thicker workpieces than standard self-piercing rivets.
- Uses Scaffolds (plated steel plate / plated steel plate with hole), heavy shutters (color steel plate / plated steel plate)



Low-profile fastening (thin round curl)

Features : The buck-tail has a smooth contour and it does not catch other materials.

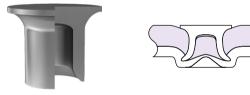
Uses : Shutter rails (sliding part) and signboards



In addition to the standard products, we tailor rivets to specific customer needs. Please don't hesitate to ask us.

Self-piercing bolt

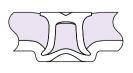
Features : No welding is required and the fastened joint does not need a touch-up. The work area is kept clean and neat.


Uses : Motor mounting bolts and nuts

Sealed self-piercing rivet

Features : The rivet shank does not pierce through the workpieces and thus high air-tight sealing is maintained. The appearance is neat.

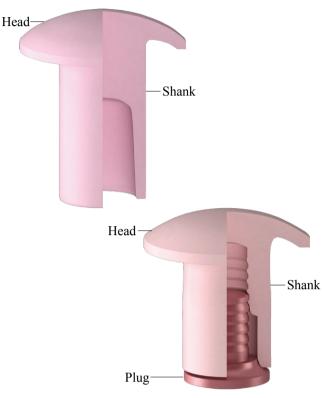
Uses Storerooms, scaffold planks, shutters, storm doors, containers (plywood / plated steel plate), building components, signboards and other products for outdoor use



Rivet for plywood/plaster

Features : This rivet does not require drilling a hole in the plywood or plaster. No drilling scrap is generated and the work area is kept clean.

Uses : Containers (plywood / plated steel plate) and building components



PLASTIC RIVET

No heating is required. Plastic rivet with an anti-loosening structure.

Structure of plastic rivet

Features

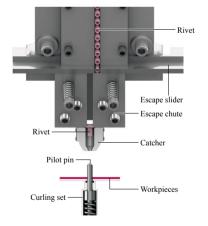
Fastening at normal temperature without heating

This is a plastic semi-tubular rivet that can be fastened at normal temperature.

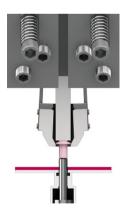
"Spring back structure" for anti-loosening

The spring back structures of the head and the buck-tail prevent loosening of a fastened rivet, common to plastic rivets.

Various colors

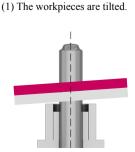

The rivet is made of polyacetal (POM) and it comes in a wide selection of colors

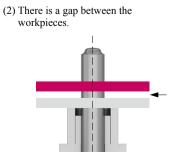
Suitable for eco-friendly products

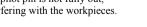

Using this rivet instead of a metal fastener, a manufacturer can develop a product that is environmentally friendly and requires no sorting for waste.

Fastening process

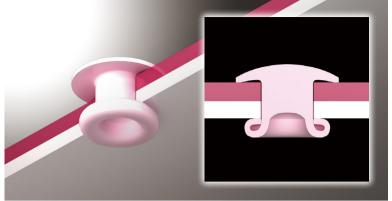
- ① Insert the pilot pin into the workpieces.
- 2) The stem descends, pressing the rivet head.
- ③At the same time, the catcher descends, holding the rivet.
- Guided by the pilot pin, the rivet goes through the workpieces and fastening is complete.


Sten

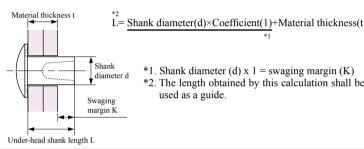



Operating precautions

If the rivet is installed in the situations below, it may result in improper fastening.

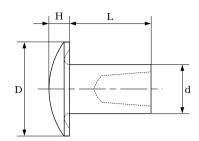

(3) The pilot pin is not fully out, interfering with the workpieces.

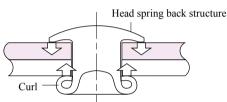
(4) The curling set is worn.



Roll-Up Rivet

[MOVIE] http://www.byora.co.jp/index/products/movies/rollup.html


Calculation of under-head shank length


Specification table

$r(d) \times Coefficient(1) + Material thickness(t)$	
diameter (d) x 1 = swaging margin (K) ngth obtained by this calculation shall be s a guide.	5

Shape and symbols of standard dimensions

Fastening using spring back

The spring back structures of both the head and the curl prevent loosening of a fastened rivet. (PAT 3029862)

Unit (mm)

Nominal	(1	Ι)	Н			L			nded work ameter	Strength (kN)	
diameter	Standard	Tolerance	Standard	Tolerance	Standard	Tolerance	Min	Max	Tolerance	Standard	Tolerance	Tensile	Shear
3.5	3.5		8.0		1.3		5			3.7		0.11	0.31
4	4		7.6		1.7		6	15.0		4.2		0.16	0.42
4.5	4.5	± 0.1	8.6	± 0.2	1.9	± 0.1	7		± 0.2	4.7	+0.1	0.20	0.46
5	5		9.6		2.1		7	25.0		5.3		0.26	0.61
6	6		11.5		2.5		8	23.0		6.3		0.40	0.90

Remarks) A selection of materials, such as POM, PP and PA, are available to suit various purposes.

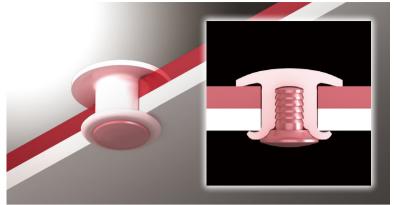
Note) The strength may be reduced when the rivet is fastened with a low ambient temperature or when it is used for some purposes. Please ask us. (Testing ambient temperature: 23°C)

Chemical properties of polyacetal (POM)

(1) Combustibility

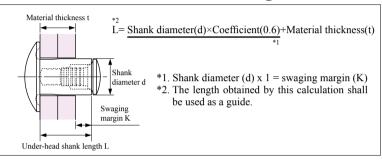
	Flash point	Autoignition point	Ignition time	Burning speed	Burning rate	Smoke	CO2	CO	O2
POM	320°C	400°C	11 sec	3.5 g/min	98.9%	0.005 m ²	0.191Vol%	0.001Vol%	0.258Vol%

Remarks) POM is plastic made up of carbon (C), hydrogen (H) and oxygen (O). The composition ratio stands at C:40%, H:5.7% and O:53.3%.


(2) Chemical resistance

Compatibility \bigcirc : Fully compatible \bigcirc : With reservations, \triangle : Only at normal temperature with no stress, \times : Not compatible

	Methanol	Ethanol	Toluene	Gasoline	Gas oil	EG oil	Acetic acid 1%	Sulfuric acid 1%	Hydrochloric acid 10%
POM	O	O	O	O	O	O	O	0	\bigtriangleup


Remarks) The rivet has high resistance to chemicals except for strong acids, such as hydrochloric acid and sulfuric acid.

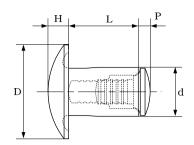
e-Power Rivet

[MOVIE] http://www.byora.co.jp/index/products/movies/epower.html

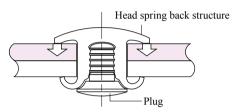
Calculation of under-head shank length

Specification table

-														Omt (mm)
Nomal	(d	D		Н		P^{*2}	L			Recomment hole di		Strength(kN)	
diameter	Standard	Tolerance	Standard	Tolerance	Standard	Tolerance	Dimension	Min	Max	Tolerance	Standard	Tolerance	Tensile	Shear
3	3	+ 0.2	5.8	± 0.2	1.2	± 0.1	1	5	15	± 0.2	3.2	+ 0.1	0.17	0.21
5	5	- 0.1	9.6	± 0.2	2.1	± 0.1	1.3	7	25	± 0.2	5.4	0	0.58	0.82


*1. Please ask us for different nomal diameter. *2. The P lengths are given as guidelines.

Remarks) A selection of materials, such as POM, PP and PA, are available to suit various purposes.


Note)(1) The strength values above are results of measurement using POM.

(2) The strength may be reduced when the rivet is fastened with a low ambient temperature or when it is used for some purposes. Please ask us.

Shape and symbols of standard dimensions

Fastening using spring back

The effect of the plug and the head "spring back structure" prevents loosening of the fastened joint.

Unit (mm)

(Testing ambient temperature: 23°C)

RIVET SETTER

Fukui Byora's rivet setter that meets diversified needs

Fukui Byora's rivet setter equipped with an automatic rivet feeder will dramatically improve efficiency in fastening work.

Specifications

	Мо	del		RS	512			RS	620			RS	305	
	Ph	oto												
Sou	rce volta	ge	Single-phase 100 VAC				-	Three-phas	se 200 V/	AC		Three-phas	se 200 VA	AC
Pow	er consu	imption (W)	200					40	00		400			
Driv	ve systen	1		Pressurizi	ng by ca	m		Pressurizi	ng by ca	m	Pressurizing by flywheel			
Takt tin	$p_{\alpha}(\mathbf{S})$	50Hz		0	.5			0	.6			0	.4	
Takt till	10(3)	60Hz		0	.4			0	.5			0	.3	
Allowabl	e pressu	rization load (kN)			7			1	5		15			
Machine	Dir	nensions (mm)		W350×D3	590×H75	0		W600×D8	00×H17	20		W600×D8	70×H15	50
dimensions	Ar	m length (mm)		200 (30	0or400)			320	(400)			320	(400)	
	Wo	rk height (mm)		2	80			90	67			90	57	
	Weigh	nt (kg)		1	09			30	00			3	10	
	Semi-	SW or BS	1.6~4			C1 1	3~6	Max		G1 1	3~6	Max		
Applicable	tubular	SUS	diameter $1.6 \sim 3$ length L $12(20)$		Shank diameter	3~5	Max length L	15(25)	Shank diameter	3~4	Max length L	15(30)		
Applicable rivet size		AL or CU				3~6				3~6				
	Self-	SW	Shank	2	Max	Standard	Shank	3~3.6	Max	Standard	Shank	3~3.6	Max	Standard
	piercing	SUS	diameter	2	length L	size	diameter	3 ~ 3.5	length L	size	diameter	3~3.5	length L	size

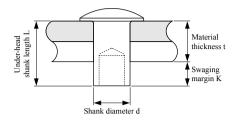
Note) (1) The figures in () are optional sizes. (2) In the case of shaft diameter of 1.6 mm, the special specification may be adopted depending on type of material or length L. (3) Trial fastening may be required depending on fastening conditions (please ask us in advance). (4) The specifications above are subject to change without notice. (5) When a SUSXM7 self-piercing rivet with a shaft diameter of 2xL is needed, please ask us in advance.

Optional specifications

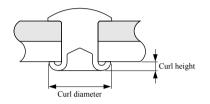
Code			Description	Code	Description
30BR	Arm lengt	h 300 mm (1	for RS512 only)	ALU	Pilot pin lockup system (pneumatic)
40BR	Arm lengt	h 400 mm (1	for all the models)	MLU	Pilot pin lockup system (mechanical)
AH	Automatic	hopper		PS	Punch up/down slide mechanism
PF	Parts feede	er		ARP	Rivet forced insertion system
L	L-spec: Le	ength L up to	0 4 times the shank diameter	ARE	Pneumatic escape system
		RS512	Length L: 15 to 24 mm	Е	Power supply specification (e.g., overseas)
LL	LL-spec	RS305	Length L: 15 to 30 mm	SP	Spotlight
		RS620 Length L: 15 to 25 mm		T2	Wheeled table (for desktop type)

Remarks) The standard specification of our rivet setter is based on the JIS B 1215 low round head rivet fastening. When the standardized JIS B 1215 rivet has the head other than low round or the dimensions partially different from the specification (e.g., hole diameter), it shall be handled as optional specification.

Rivet setter safety devices

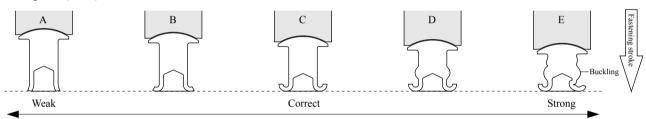

Workpiece holder	Lockup curling set	Two-hand control button switch	Shutter-type safety device	Photoelectric safety device

Remarks) All the safety devices above are optional extras.

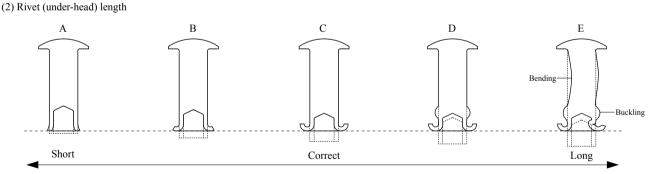

Design Guidelines / Semi-tubular rivet

Calculation of rivet size

(1) Calculation of under-head shank length (guide)



(2) Calculation of finished dimensions of buck-tail (guide)



Finished conditions

(1) Fastening force (stroke)

(Fastening force is weak) When fastening force is too weak, the curl diameter will be small and the rivet strength may be reduced (example A above). (Fastening force is strong) When fastening force is too strong, buckling may occur and it may result in defective fastening (example E above).

(L is shorter than correct length) When the length is too short, the curl diameter will be small and the rivet strength may be reduced (example A above). (L is longer than correct length) When the length is too long, bending or buckling may occur and it may result in defective fastening (example E above).

Calculation of semi-tubular rivet fastening load

* The result of the calculation below shall be used as a guide.

$\mathbf{F}(\mathbf{kN}) = (\mathbf{d}^2 - \mathbf{A}^2) \times \mathbf{T} \times \mathbf{K}$

d: Shank diameter (mm) A: Hole diameter (mm) T: Fastening coefficient K: Material constant

1 Fastening coefficient T (Number varying with fastening force)

Fastening force	Weak	Standard (normal)	Strong
Fastening coefficient T	0.6	0.75	0.9

2 Material constant K (Number varying with rivet material)

Material	SWCH10A	A1070W	A1200W	A5052W	A5056W	C1100W	C2700W	SUS430	SUSXM7
Material constant K	1.0	0.24	0.24	0.45	0.55	0.59	0.96	1.34	1.64

* Use the result of the calculation below as a guide.

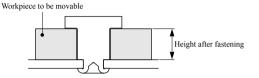
- *1. Shank diameter (d) x coefficient (0.6) = swaging margin (K)
- *2. Use coefficient (0.5) as a guide for SUSXM7
- *3. The under-head shank length L should be less than 5 times the shank diameter or in the case of stainless steel less than double.

(If the length exceeds the limit, it may result in buckling or any other faults.)

Curl diameter ≒ shank diameter (d) × 1.5 Curl height ≒ shank diameter (d) ×0.2

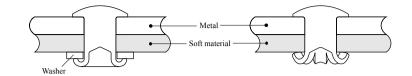
Fastening soft material

(1) The head-side workpiece is a soft material.


Recommendation) Use a truss rivet

As a truss rivet has a large diameter head, the workpieces are held more securely.

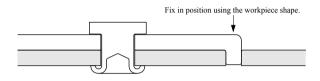
Making the workpieces movable


Recommendation) Use a shoulder rivet.

Choose the appropriate shoulder rivet size, considering the thickness and clearance of the workpiece to be made movable.

(2) The curl-side workpiece is a soft material.

Recommendation A) Use a washer on the curl side. Recommendation B) Use the PL (petal) type.



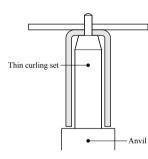
Using a washer with a larger diameter than curl diameter, the workpieces are held more securely.

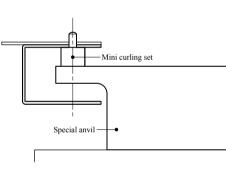
The fastening diameter is larger than usual and the workpieces are held more securely.

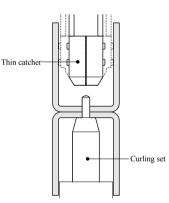
Preventing turning and misalignment of workpieces

Recommendation) Fix in position using two rivets.

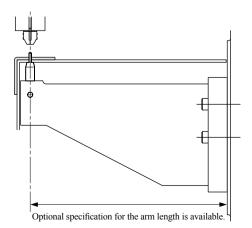
We recommend that the workpieces should be kept in position using two rivets or using the workpiece shape and fastening with a rivet.

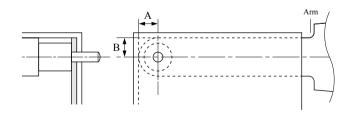

Workpieces interfere with the rivet setter (fastening jig).


(1) Thin curling set


(2) Mini curling set + special anvil

* Preventive measures on the rivet setter


(3) Thin catcher

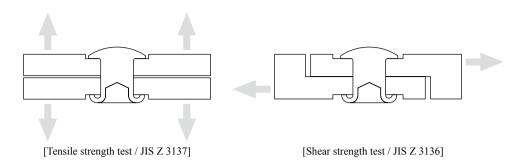


(4) Great arm length is required.

(5) Fastening a corner of box-shaped workpieces

The arm for holding the curling set can be machined to meet specific requirements.

* We will minimize the dimensions A and B, considering the arm strength against the fastening load.


Strength Test Methods and Galvanic Corrosion

Tensile/shear strength test methods

(For blind rivets and hollow rivets)

Test conditions

- [Test specimen]
- Material: Heat-treated steel plateThickness: Upper limit of
- Thickness: Opper limit of recommended fastening range
- Work hole diameter: Lower limit of
- recommended work hole diameter
- [Testing machine]
- Testing machine: Compliant with the JIS B 7721
- Test speed: 15 mm/min

- 1. Apply a load to a rivet in the arrow directions using a tension tester. Measure the maximum load the rivet withstands before it breaks.
- 2. The strength values given in the brochure are measurement results obtained by our testing. They may vary with the type or thickness of materials used. In designing, be sure to allow a safety factor of at least three.

Galvanic series in sea water

Potential

Galvanic corrosion (dissimilar metal corrosion)

When different metals are in contact with each other, if moisture is present, a potential difference between the metals will cause partial electrification and cause corrosion. This is called galvanic corrosion. Even when the base material and the rivet fastened to it are both resistant to corrosion, when they come into contact with each other, galvanic corrosion may occur. The areas of the base material and the rivet may affect the progression of corrosion.

e base			
en they	-1.50	Magnesium	Base metal
e areas	-1.03	Zinc	(corrosion side)
on.	-0.74	Aluminum (5000 series))
	-0.61	Carbon steel	
	-0.45	Solder (50/50)	
	-0.42	Tin	
ence.	-0.36	Brass	
ting.	-0.36	Copper	
	-0.22	SUS430 (passive)	
	-0.20	Nickel	
	-0.15	SUS410	
	-0.15	Titanium (industrial)	
	-0.13	Silver	
	-0.10	Titanium (high purity)	
	-0.08	SUS304	
has a	-0.05	SUS316	Noble metal
ial.	0.26	Platinum	(corrosion-proof side)

Metal

galvanic corrosion	F F F F F F F F F F F F F F F F F F F
The potential difference is large.	Use materials with a smaller potential difference.Reduce the potential difference, e.g., by plating.
Metals are in contact with moisture.	Protect with a plastic or other insulators.Insulate by painting.
The atmosphere is hot and humid.	Protect with a plastic or other insulators.Insulate by painting.
The material of the rivet is low-potential metal (base metal).	• Make sure that the material of the rivet has a higher potential (noble) than the base material.

Corrosion prevention measures

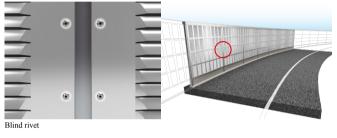
Fastening condit	ions (combination)			Progression	Fastening
Rivet material	Workpiece material	Galvanic corrosion example		of corrosion	reliability
Aluminum	Stainless steel	Corrosion of the rivet (the area in contact with the base material) advances very fast.Example under extremely severe condition	Aluminum Galvanic corrosion Stainless steel	Fast	×
Stainless steel	Aluminum	Corrosion of the base material (the area in contact with the rivet) advances. When the base material has a large area of corrosions, the progression of corrosion is relatively slow and the materials can be used depending on usage environment (please ask us).	Stainless steel Galvanic corrosion		\bigtriangleup
Aluminum	Steel (zinc plating)	Corrosion of the zinc coat of the base material (the area in contact with the rivet) advances first and then corrosion of the rivet begins to advance. The progression of corrosion is slow and the materials can be used depending on usage environment (please ask us).	Aluminum Galvanic corrosion Steel		Δ
Steel (zinc plating)	Aluminum	Corrosion of the zinc coat of the rivet (the area in contact with the base material) advances first and then corrosion of the base material begins to advance. The progression of corrosion is very slow and the materials can be used depending on usage environment (please ask us).	Steel Galvanic corrosion Aluminum	▼ Slow	0

Base material and rivet for fastening

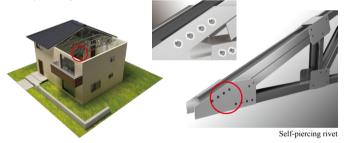
Conditions triggering

Application Examples

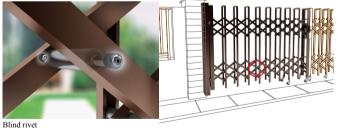
Application examples of various rivets


Aluminum wing roof truck

Self-piercing rivets high in strength and durability are used for assembly of large workpieces (wing roof truck).


Noise barrier

Blind rivets are used for noise barriers for an expressway subject to severe weather conditions.


Roof

Self-piercing rivets requiring no mating hole are used for roof trusses, which require long-term durability and strength.

Gate

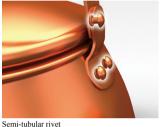
Blind rivets, which are easy to install, are used for a gate consisting of workpieces with complicated structures and when operators have to work in various postures.

Louvered window

Semi-tubular shoulder rivers are used for louvered windows. The workpieces (fittings for holding panes) need to be movable after fastened.

Semi-tubular rivet

Bag


Semi-tubular rivets are used for a hand bag, which requires a decorative appearance and stable strength. The head may be shaped to original design

Cooking utensil

Semi-tubular rivets are used for cooking utensils, which are heated or cooled rapidly and which require water resistance and strength

Sample book

Roll-up rivets (plastic rivets) are an eco friendly solution. Good examples are office binders and building materials.

PC case

Blind rivets, fastened with access to only one side, are used for workpieces with complicated contours where the rear of the joint is not accessible with a jig.

Baby carriage

Semi-tubular rivets, high in stability, are used for a baby carriage that requires high fastening reliability and durability.

www.byora.co.jp

Fukui Byora Co., Ltd.

Certified under ISO 9001, ISO 14001, ISO 13485, and IATF 16949

Tokyo branch	5F.PMO GINZA, 8-12-8 Ginza, Chuo-ku, Tokyo 104-0061	TEL: 03-6278-8736 FAX: 03-6278-8746
Osaka branch	DOJIMA AVANZA 5F, 1-6-20 Dojima, Kita-ku, Osaka-shi, Osaka 530-0003	TEL: 06-6225-8387 FAX: 06-6225-8386
Nagoya branch	NFC Marunouchi Building 12F, 1-17-29 Marunouchi, Naka-ku, Nagoya, Aichi 460-0002	TEL: 052-265-7201 FAX: 052-265-7205
International sales division	6F.PMO GINZA, 8-12-8 Ginza, Chuo-ku, Tokyo 104-0061	TEL: 03-6228-4391 FAX: 03-6228-4493
Business headquarters	59-115 Yubinaka, Awara, Fukui 919-0898	TEL; 0776-75-1115 FAX: 0776-75-1022
Headquarters	1-7 Yamajuraku, Awara, Fukui 919-0898	TEL: 0776-73-1000 FAX: 0776-73-0111

* The specifications are subject to change without notice. All rights reserved.

18.03.22.2000 © FUKUI BYORA